STATISCHE BERECHNUNG

Berechnungsgrundlagen: EN 1995-1:2004/A1:2008

Typ: 408940 - Oban 40

LASTANNAHMEN

Bitumenabdichtung als Dachschindeln 0,04 kN/m² Nut+Federbohlen, d=18mm 0,09 kN/m²

WIND- UND SCHNEELASTEN:

Schneelastzone Bodenschneelast $s_k = 0,65 \text{ kN/m}^2$ Windzone ReferenzWind g_{re f}= 0,32 kN/m²

Kombinationen für Tragfähigkeit: 4 uls (1+2)*1.20+3*1.50

Baustoffe: C24

gM = 1.30 f m,0,k = 24.00 MPa f t,0,k = 14.00 MPa f c,0,k = 21.00 MPa f c,90,k = 2.50 MPa f t,90,k = 0.40 MPa f c,90,k = 5.30 MPa E 0,05 = 7400.00 MPa G moyen = 690.00 MPa Service class: 1 Beta c = 1.00

Querschnittswerte: 44x120

ht=12.0 cm

Ay=35.20 cm2 Iy=633.60 cm4 Wy=105.60 cm3

Az=35.20 cm2 Iz=85.18 cm4 Wz=38.72 cm3 bf=4.4 cm Ax = 52.80 cm 2tw=2.2 cm Ix=262.0 cm4

tf=2.2 cm

TRAGFÄHIGKEITSNACHWEISE

 $Sig_m,y,d = MY/Wy = 1.02/105.60 = 9.70 \text{ MPa}$ f m,y,d = 11.58 MPa

Parameters |

Ksys = 1.00kmod = 0.60kh y = 1.05

 $\overline{\text{lef}} = 2.34 \text{ m}$ Lambda_rel m = 0.78 $Sig_cr = 39.80 \text{ MPa}$ k crit = 0.98

Kontrolle des Ergebnises:

 $Sig_m,y,d/f m,y,d = 9.70/11.58 = 0.84 < 1.00$ (6.11)

 $Sig_m,y,d/(kcrit*f m,y,d) = 9.70/(0.98*11.58) = 0.86 < 1.00$ (6.33)

GEBRAUCHSTAUGLICHKEIT: DIE ZUL. VERFORMUNG WURDE MIT ANGESETZT

u fin,y = 0.0 cm < u fin,max,y = L/200.00 = 1.3 cm

Governing load case: (1+0.6)*1 + (1+0.6)*2 + (1+0*0.6)*3

u fin,z = 0.8 cm < u fin,max,z = L/200.00 = 1.3 cm

Governing load case: (1+0.6)*1 + (1+0.6)*2 + (1+0*0.6)*3

Holzträger OK!

Bei der Statik in der Anlage handelt es sich um eine statische Berechnung unseres Statikers aus Estland (nach Vorgaben der deutschen Gesetzgebung). Da unser Statiker jedoch nicht über eine deutsche Zulassung verfügt, ist diese Statik nicht rechtsgültig.

Qualifizierter

Statische Berechnung Haus 'Oban 40' (Art.-Nr. 408940)

Auftrags-Nr. :	2022-17-Go
Bauvorhaben :	Errichtung eines Blockbohlenhauses
Bauherr :	
Objektplanung :	Lasita Maja Deutschland GmbH Schlosspark 11 51429 Bergisch Gladbach
	Tel.: +49 +2204-963549-0

Tragwerksplanung: Q*^} a^`\a>\[ÄÜEOE} [\| a

Ù&@>¢^¦•dæi^ÁiJ

FIÍÍÌÁÞ°c@cæþÁðUVÁÓ^¦*@[|:ËÜ^@a¦>&\^

Tel.: 033200-51189

e-Mail: arnostatik@web.de

aufgestellt: 04.04.2023

Inhaltsve	erzeichnis	
Position	Beschreibung	Seite
TB	Titelblatt	1
	Inhalt	2
AH	Allgemeine Hinweise	3
VB	Vorbemerkungen	5
1	Dach	7
2	U\ ã˘ËÁ ^äÁPãá&\ã‡&æã	13
3	Ù‡^äæ	19
4	Ù↔^ä{æãá^←æã ^&Á ^äÁÖãfi^ä ^&	21
PP	Positionsplan	22

2

BBH2023

04.04.2023

Seite

АН

3

Position Projekt

BBH2023

Pos. AH

Allgemeine Hinweise

Bezeichnung des Hauses

Datum

mb BauStatik S011 2023.008

IÃnvkimgkv"kp"fgt"GW

 $\begin{tabular}{ll} $\mathbb{E} \leftrightarrow \mathbb{E} & \mathbb{E} &$

Nationale Anwendungsdokumente

ÔfiãÁä \leftrightarrow æÁÑ|^äæbãæ*|â \rightarrow ××-ÁŒæ|\b´å \rightarrow á^äÁ}|ãäæ^Áä \leftrightarrow æÁSá\ \leftrightarrow ~^á \rightarrow æ^Á Anwendungsdokumente bei der Erstellung der vorliegenden Statik âæãfi´ \leftarrow b \leftrightarrow ´å\ \leftrightarrow &\È

Bei Verwendung der vorliegenden Statik in einem anderen Land der EU ist ä $|\tilde{a}'\tilde{a}\acute{a}\acute{e}^*\tilde{a}\acute{a}\acute{e}^*\tilde{a}\acute{a}\acute{e}^*\tilde{a}\acute{a}\acute{e}^*\tilde{a}\acute{a}\acute{e}^*\tilde{a}\acute{a}\acute{e}^*\tilde{a}\acute{a}\acute{e}^*\tilde{a}\acute{a}\acute{e}^*\tilde{a}\acute{a}\acute{e}^*\tilde{a}\acute{a}\acute{e}^*\tilde{a}\acute{a}\acute{e}^*\tilde{a}\acute{a}\acute{e}^*\tilde{a}\acute{$

Ncuvcpu®v | g

DIN EN 1991-1-FÁàfiãÁÓ↔&æ^- und Nutzlasten

DIN EN 1991-1-ĞÁàfiãÁU´å^ææ→áb\æ^

DIN EN 1991-1-HÁàfiãÁÙ↔^ä→áb\æ^

·âæ \leftrightarrow Á}|ãäæ^ÁàfiãÁU´å^ææ- und Windlasten nur einzelne Zonen mit definierter &æ~&ãáà \leftrightarrow b´åæãÁQá&æÁâæãfi´ \leftarrow b \leftrightarrow Ćå \leftrightarrow CèÁŒ \leftrightarrow æbÁ \leftrightarrow b\Á \downarrow æ}æ \leftrightarrow bÁ \leftrightarrow ^Áäæ^Áâæ\ãæààæ^äæ^Á Berechnungspositionen ersichtlich.

IÃnvkimgkv"kp"fgt"DTF

Die vorliegende Statik wurde auf Basis des in der Bundesrepublik $\mathbb{E}_{\mathbb{A}} \ \hat{a} \to \hat{a} \hat{a} \times \hat{a} \times$

DIN EN 1991-1-ĞÁàfiãÁU´å^ææ→áb\æ^

DIN EN 1991-1-HÁàfiãÁÙ↔^ä→áb\æ^

 $U_{\sim}^{\dot{a}\rightarrow\dot{A}\dot{a}fi\tilde{a}\acute{A}U'\dot{a}^{\dot{a}}\dot{e}\tilde{a}-\dot{a}\rightarrow\dot{b}\acute{A}\dot{a}|^{\dot{a}\dot{A}\dot{a}fi\tilde{a}\acute{A}\dot{b}}\rightarrow^{\dot{a}\rightarrow\dot{A}\dot{a}\dot{a}\dot{e}\tilde{a}\dot{e}\tilde{a}\rightarrow^{\dot{a}\dot{a}\dot{a}\dot{e}}\tilde{a}\dot{e}$

Seite

4 AH

Datum

04.04.2023

mb BauStatik S011 2023.008

Position Projekt

BBH2023

ÔfiãÁä↔æÁ{~ã→→æ&æ^äæÁÑæãæ´å^|^&Á&æ→\æ^Áå↔^b↔´å\→↔´åÁäæãÁU´å^ææ- und Ù↔^ä→áb\æ^Áà~→&æ^äæÁÓ↔^b´åã‡^←|^&æ^İ

Schneelast

&fi→\↔&ÁàfiãÁU´å^ææ→áb\~~^æÁFÁâ↔bÁ~|Áæ↔^æãÁÒ=åæÁ{~^ÁI€€Á↑ÁfiâæãÁäæ↑Á Meeresniveau

&fi \rightarrow \ \leftrightarrow &ÁàfiãÁU´å^ææ \rightarrow áb\~~^æÁGÁâ \leftrightarrow bÁ~|Áæ \leftrightarrow ^æãÁÒ=åæÁ{~^ÁGÎIÁ↑ÁfiâæãÁäæ↑Á Meeresniveau

Der Sonderlastfall "Deutsche Tieflandebene" wurde nicht angesetzt.

Windlast

&fi→\↔&ÁàfiãÁä↔æÁÙ↔^ä→áb\~~^æÁFÁ~å^æÁÓ↔^b´åã‡^←|^&æ^ &fi→\↔&ÁàfiãÁä↔æÁÙ↔^ä→áb\~~^æÁGÁ^|ãÁàfiãÁäábÁÑ↔^^æ^→á^ä

Seite

Datum

04.04.2023

mb BauStatik S011 2023.008

Position Projekt

BBH2023

5 VB

Pos. VB

Vorbemerkungen

Allgemeines

 $\mathbb{G} \leftrightarrow \mathbb{Z} \{ \sim \tilde{a} \rightarrow \mathbb{Z} \times \tilde{a}

Die nachfolgende Berechnung umfasst den Nachweis aller tragenden Teile des Öáã\æ^åá|bæbÈÁŒábÁÖæâ‡|äæÁ \leftrightarrow b\Á^ \leftrightarrow ´å\Áá \rightarrow bÁÙ~å^&æâ‡|äæÁ \leftrightarrow ább \leftrightarrow à \leftrightarrow ` \leftrightarrow æã\ÌÁä \leftrightarrow æÁ Sá´å}æ \leftrightarrow bæÁ \leftarrow =^^æ^Áäæbåá \rightarrow âÁá|ßæãåá \rightarrow âÁäæãÁÞáå↑æ^âæä \leftrightarrow ^&|^&æ^ÁàfiãÁÙ~å^ã‡|↑æÁ erfolgen. Daher werden keine Gebrauchstauglichkeitsnachweise auf E[ã´åâ \leftrightarrow æ&|^&Á&æàfiåã\È

N→æÁÙ‡^äæÁâæb\æåæ^Áá|bÁH€Á↑↑Áä↔´←æ^ÁÑ→~´←â~å→æ^ÊÁä↔æÁá^Á↔åãæ^ÁÓ^äæ^ÊÁá→b~Áá^Áäæ^ÁÖæâ‡|äææ´←æ^Á↑↔\æ↔^á^äæãÁ{æãb´åã‡^←\Á}æãäæ^ÈÁŒ↔æÁÑ→~´←â~å→æ^Áb↔^äÁá|´åÁá→bÁ©âæãäæ´←|^&ÁäæãÁÚfiã−||^äÁÔæ^b\æã=àà^|^&Á{~ãåá^äæ^È

 $\texttt{E} \& \hat{\Delta} \hat{O} | \& \hat{\Delta} \& \hat{A} \&$

 $N\to \infty$ ÁN^b´å \to fibbæÁ|^äÁÜæãâ \leftrightarrow ^ä|^&æ^ÁÇU´åá \to |^&ÊÁŞàæ\\æ^ÊÁÑ~å \to æ^DÁb \leftrightarrow ^äÁ $\uparrow \leftrightarrow$ \Á bauaufsichtlich zugelassenen Verbindungsmitteln zug- und druckfest herzustellen.

 \tilde{N} á|'|b|t^äæÊÁN^b'å \rightarrow fibbæÁ|^äÁÜæãâ \leftrightarrow ^ä|^&æ^Áb \leftrightarrow ^äÁá|bäãfi' \longleftrightarrow 'åÁ $^\leftrightarrow$ 'å|A Bestandteil der vorliegenden Berechnungen.

Beachte!

Lasten

Dacheindeckung:

Es wird eine Deckung aus einer Lage nackte Bitumenbahn und einer zweiten Lage Bitumendachschindeln angesetzt.

Seite

6 VB

Datum

04.04.2023

mb BauStatik S011 2023.008

Position Projekt

BBH2023

Schnee:

Es sind die Angaben in den "Allgemeinen Hinweisen" zu beachten. N \rightarrow bÁU´å^æ \rightarrow áb\Á}æãäæ^Á€ÊÎIÁ \leftarrow SĐ↑¥Áá|àÁ俆ÁÑ~äæ^Áá^&æbæ\¯\È ŒæãÁQáb\àá \rightarrow ÁÄS~ãääæ|\b´åæÁÚ \leftrightarrow æà \rightarrow á^äæâæ^æÄÁ} \leftrightarrow á\Áâæãfi´ \leftarrow b \leftrightarrow ćå\ \leftrightarrow &\È

Wind:

Es sind die Angaben in den "Allgemeinen Hinweisen" zu beachten. N \rightarrow bÁ $\dot{U}\leftrightarrow$ a \rightarrow áb $\dot{A}\leftrightarrow$ A $\ddot{A}\leftrightarrow$ A $\ddot{A}\to$ A \ddot

sonstige Lasten:

Als weiteren Belastungen treten nur Eigenlasten des Bauwerkes und die Üæã \leftarrow æåãb \rightarrow áb \setminus Áá \mid àÁäæ \uparrow Áô \mid Sâ \sim äæ $^$ ÁäæbÁÑá \mid 3æã \leftarrow æbÁá \mid àÌÁb \leftrightarrow æÁ $\}$ æãäæ $^$ Á&æ \uparrow ‡SÁÓOÁFÁ \mid 7äÁ nach Vorgabe durch den Auftraggeber angesetzt.

Berechnungsgrundlagen, Unterlagen und Hilfsmittel

ÔfiãÁä↔æÁSá´å}æ↔bæÁb↔^äÁà~→&æ^äæÁÑæãæ´å^|^&b&ã|^ä→á&æ^Á↑áß&æâ→↔´åİ

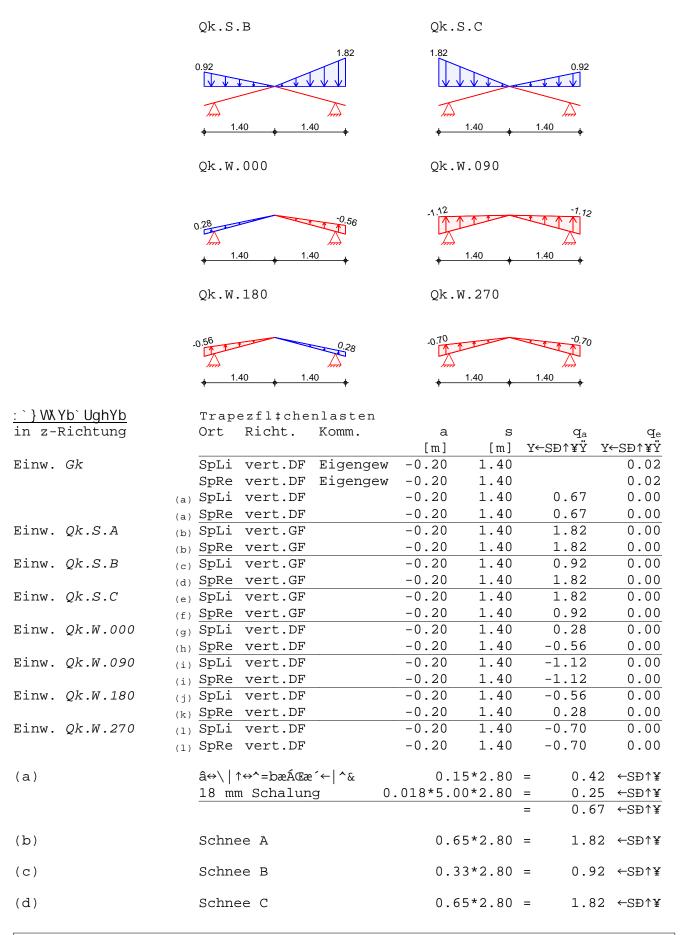
EC 0, DIN EN 1990 Grundlagen Eurocode

EC 1, DIN EN 1991-1-1 Einwirkungen auf Tragwerke

EC 5, DIN EN 1995-1-1 Bemessung und Konstruktion von Holzbauten

sowie die Vorschriften, auf die in den vorstehenden EC/DIN verwiesen wird.

Des Weiteren kamen folgende Unterlagen und Hilfsmittel zur Anwendung: Planungszeichnungen (Datenblatt)


Bautechnische Zahlentafeln, Wendehorst

Software: mb ½ Statikprogramme

Richtlinien und Informationen der Baustoffhersteller

Pos. 1 Dach <u>Hi nwei s</u> Nachweis der Sparren von Wandmitte zu Wandmitte Der Lastansatzerfolgt als Dreieckslast. Der Sparrenabstand wird mit 1,00 m angesetzt. Die Lasteinzugsâãæ↔\æÁâæ\ã‡&\Áá^ÁäæãÁÚãá|àæÁGÊ΀Á↑ System Sparrendach M 1:50 1.20 0.20 b/h Abmessungen Bauteil 1 Material [cm] Mat./Querschnitt [m] Sparren links 1.45 NH C24 4.4/12.0 4.4/12.0 Sparren rechts 1.45 NH C24 Auflager Lager $K_{T,z}$ Х \mathbf{z} $K_{T,x}$ [m] [m] [kN/m][kN/m]Ā 0.20 0.05 fest fest В 2.60 0.05 fest fest Dachneigung Dachneigungswinkel 1i = 15.00 fl 15.00 fl ·´åå=åæ h_{1i} 0.38 $h_{re} =$ 0.38 m Abstand Sparrenabstand 1.00 a = m Bel astungen Belastungen auf das System Grafi k Belastungsgrafiken (einwirkungsbezogen) Einwirkungen Gk Qk.S.A 1.82

Nutzungsklasse 2

[RA]					Position		1
Datum 04.04	.2023 mb Bau	Statik S100	.de 2023	.009	Projekt		BBH2023
Nachweise (GZT)	Sá´å}æ↔bæ <i>Í</i>		~~ Ъ\ 5^		3503+3454	-max\ 1.451	3 TOOC T
Naciwei 3c (021)	•		D\a	aAaæaAU	aaka‡a ^y k	A a	ACQDA
	EN 1995-1-	· 1					
<u>Bi egung</u>	Sá´å}æ⇔bÁå	aæãÁÑ⇔æ&	æ∖ãá&à‡	å↔&←æ↔∖			
Abs. 6.1	x	Ek	$k_{ exttt{mod}}$	N_d	0,d	f _{0,d}	
				M_{yd}	my,d		
	[m]		[_] []	kN,kNm]		[N/mm ²]	[-]
Coli Vallo	$\frac{L}{(L = 0.21)}$				[11/111111]	[11/ !!!!!]	
SpLi KrUn					0 00	10 04	
	0.21	2	0.90	0.18	0.03		
				-0.07	0.67	16.62	0.04*
SpLi Feld 1	(L = 1.24)	$m, k_{c,y}$	= 0.91)				
	0.55	2	0.90	-2.28	0.43	14.54	
				0.26	2.43	16.62	0.18*
SpRe KrUn	(L = 0.21	m k	= 1 00)				
bpic itron	0.21	3	0.90	0.18	0.03	10.04	
	0.21	3	0.90				0 0 4 4
				-0.07	0.67	16.62	0.04*
SpRe Feld 1	(L = 1.24)	$m, k_{c,y}$	= 0.91)				
	0.55	2	0.90	-2.28	0.43	14.54	
				0.26	2.43	16.62	0.18*
<u>Querkraft</u>	Sá´å}æ⇔bÁá	a a a a a a a a a a a a a a a a a a a	← ãáà\\ã	á&à+å↔&e	– 20 ↔\		
Abs. 6.1.7	•	Ek				£.	
ADS. 0.1./	X	ĿΚ		$V_{z,d}$	d		
	[m]		[-]		[N/mm ²]		
SpLi KrUn	0.21	2	0.90	-0.66	0.38		
SpLi Feld 1	0.00	2	0.90	1.29	0.73	2.77	0.26*
SpRe KrUn	0.21	3	0.90	-0.66	0.38	2.77	0.14*
SpRe Feld 1	0.00	2	0.90	1.29			0.26*
Spite rela i	0.00	_	0.50	1.27	0.75	2.,,	0.20
GhUV] `] h} h	Sá´å}æ↔bÁä	ກ≃ກ໌ເເ\ ລິລ	(+ / + \				
	sa a jævdha	icanu (aa	() // (+ (
Abs. 6.3	D '	7		5 1. 1	7	1. 1.	
	Die Sparre		n in de	r Dachei	bene als	genaite	n
	betrachtet			_		_	_
	ŒæãÁÓ↔^à→	bbÁäæãÁ	.U∖áâ ↔ ×	•\‡\Á↔b\ <i>i</i>	Á↔↑ÁSá´å]	}æ⇔bÁäæã	Á
	Ñ↔æ&æ∖ãá&à	à‡å↔&←æ↔	\Áæ^\åá	→\æ^ÈÁÔ~	~→&æ^äæÁ		
	óãbá∖ [°] b∖áá						
		. , 5155	,		((-		
Óãbá\~b\áâ→‡^&æ^				1			$l_{ t ef,cy}$
Caba (b (aa + aa							
	~ - '			[m]			[m]
	SpLi KrUn			0.21			0.41
	SpLi Feld	1	1	L.24			1.24
	SpRe KrUn		(0.21			0.41
	SpRe Feld	1	1	1.24			1.24
Lagesi cherhei t	Lagesicher	rhaitana	chweie	in wert	ikalar P	ichtung	nach
			CIIWCIB	III VCI C.	INGICI K	reneang	nacn
DIN EN 1990, 6.4.2	NDP zu A1.			-	_		
	Aufl.	Ek		F _{d,dst}		l,stb	_
		[-]		[kN]		kN]	[-]
	A	102		-1.22	0	.47	2.61!
	В	102		-1.22	0	.47	2.61!
					_		
	Zugveranke	rung					
b\‡^ä↔&Ð{~ãfiâæã&È	Aufl.	4119				₽,	_h EK
ν/+ αναυζ~απασαασ	AULI.					F _{d,anc}	
						[kN	
	A					-0.7	
	D					0 7	172

10

172

-0.70

1

Seite Position

В

A	Proj.Bez	Errichtung e	ines Blockbohlenhauses		Seite	11
[RA]					Position	1
	Datum	04.04.2023	mb BauStatik S100.de	2023.009	Projekt	BBH2023

ÔfiãÁä↔æÁN | à→á&æãÁNÁÁ | ^äÁÑÁÁ↔b\Áæ↔^æÁ

	ÔfiãÁä↔æÁN à→á&æãÁNÁÁ ^äÁÑÁÁ↔b\Áæ↔^æÁ Zugkraftverankerung erforderlich.				
<u>5i Z`U[Yf_f}ZhY</u>	je lfd. m				
Char. Auflagerkr.					
Char. Auliagerkr.	Aufl.	$F_{x,k}$ [kN/m]	$F_{z,k}$ [kN/m]		
Einw. <i>Gk</i>	A	-0.45	0.52		
	В	0.45	0.52		
Einw. <i>Qk.S.A</i>	A	-1.06	1.27		
	В	1.06	1.27		
Einw. Qk.S.B	A	-0.80	0.72		
Fine Ob C C	<u>B</u> A	0.80	$\frac{1.20}{1.20}$		
Einw. Qk.S.C		0.80	0.72		
Einw. <i>Qk.W.000</i>	<u>B</u> A	0.08	0.72		
	В	-0.08	-0.34		
Einw. <i>Qk.W.090</i>	A	0.67	-0.81		
	В	-0.67	-0.81		
Einw. <i>Qk.W.180</i>	A	0.08	-0.34		
	В	-0.08	0.14		
Einw. <i>Qk.W.270</i>	A	0.42	-0.51		
	В	-0.42	-0.51		
5b_Yf_f}ZhY	je Sparren				
OåáãÈÁN^←æã←ã‡à\æ					
	Aufl.	$F_{x,k}$	$F_{z,k}$		
		[kN]	[kN]		
Einw. <i>Gk</i>	A	-0.45	0.52		
	В	0.45	0.52		
Einw. <i>Qk.S.A</i>	A	-1.06	1.27		
	В	1.06	1.27		
Einw. Qk.S.B	A	-0.80	0.72		
Eine Ole C C	<u>B</u> A	0.80	$\frac{1.20}{1.20}$		
Einw. Qk.S.C	В	-0.80 0.80	0.72		
Einw. <i>Qk.W.000</i>	A	0.08	0.72		
211 211		-0.08	-0.34		
Einw. <i>Qk.W.090</i>	<u>B</u> A	0.67	-0.81		
		-0.67	-0.81		
Einw. <i>Qk.W.180</i>	<u>В</u> А	0.08	-0.34		
	<u>B</u> A	-0.08	0.14		
Einw. <i>Qk.W.270</i>		0.42	-0.51		
	В	-0.42	-0.51		
Zusammenfassung	Zusammenfass	ung der Nachweise			
Nachweise (GZT)	Nachweise in	m Grenzzustand der Tragf‡higkeit			
	Nachweis	Feld x			
		[m]	[-]		
	Biegung	SpLi Feld 1 0.55 OK			

Querkraft

SpLi Feld 1 0.00 OK

0.26

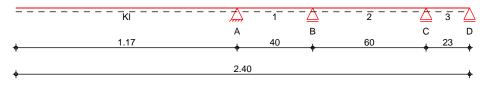
Nachweis	Feld	x		
		[m]		[-]
Lagesicherheit			Zugv.	2.61

12

BBH2023

 $\text{Zugv.:} \quad \hat{\text{Ofi}} \tilde{\text{A}} \tilde{\text{A}} \leftrightarrow \tilde{\text{x}} \tilde{\text{A}} \text{N} \hat{\text{A}}

Pos. 2 Ghi fn!'i bX'?fU[ht] [Yf


<u>Hinweis</u> Nachweis an einem Ersatzsystem wie folgt

Kragarm

Ôæ→äÁFÁKÁÙá^äâ~å→æ^→‡^&æ Ôæ→äÁGÁKÁ,àà^|^&bâãæ↔\æ Ôæ→äÁĞÁKÁÙá^äâ~å→æ^→‡^&æ Çá→æÁRáßæÁ&æã|^äæ\D

System Holz-Dreifeldtr‡ger mit Kragarm

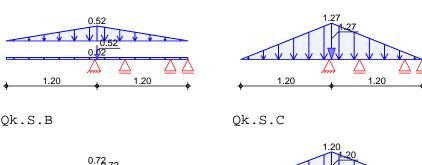
M 1:20

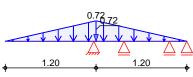
Abmessungen / Nutzungsklassen

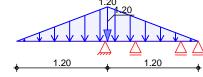
Feld	1	lef,m	NKL
	[m]	[m]	
Kl	1.17	2.34	2
1	0.40	0.40	2
2	0.60	0.60	2
3	0.23	0.23	2

Auflager

Aufl.	x	b	Transl.	Rotat.
	[m]	[cm]	[kN/m]	[kNm/rad]
A	1.17	15.00	starr	frei
В	1.57	15.00	starr	frei
C	2.17	15.00	starr	frei
D	2.40	15.00	starr	frei


Material NH C24


Querschnitt b/h = 4/11.4 cm


Belastungen auf das System

<u>Grafik</u> Belastungsgrafiken (einwirkungsbezogen)

Einwirkungen Gk Qk.S.A

Seite

Datum 04.04.2023 mb BauStatik S302.de 2023.009

Position Projekt

BBH2023

 q_{re}

[kN/m]

0.02

0.52

0.00

1.27

0.00

0.72

1.20

0.00

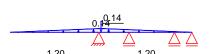
0.14

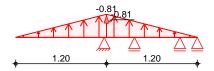
0.00

-0.81

-0.34

0.00


-0.51 0.00


 $F_{\rm z}$

0.00

14 2

Qk.W.180

Trapezlasten

Eigengew

Feld Komm.

Κl

(a) Kl

(a) Kl

 $_{(a)}^{(b)} \frac{Kl}{Kl}$

(b) Kl

(a) Kl

 $_{(b)}$ Kl

(a) Kl

(b) Kl

(a) Kl

 $_{(a)}^{(b)} \frac{\text{Kl}}{\text{Kl}}$

(b) Kl

(a) Kl

(b) Kl

Qk.W.270

S

[m]

2.40

1.20

1.20

1.20

1.20

1.20

1.20

1.20

1.20

1.20

1.20

1.20

1.20

1.20

1.20

1.20

1.20

а

[m]

0.00

0.00

1.20

0.00

1.20

0.00

1.20

0.00

1.20

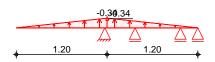
0.00

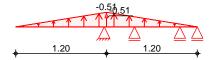
1.20

0.00

1.20

0.00


1.20


0.00

1.20

а

Qk.W.090

 q_{li}

[kN/m]

0.00

0.52

0.00

1.27

0.00

0.72

0.00

1.20

0.00

0.14

0.00

0.00

-0.34

-0.51

0.00

-0.81

Streckenlasten in z-Richtung

Edmora	C1-	

د ند	 •	GΛ

Einw. Qk.	S	. A
-----------	---	-----

Einw. Qk.S.B

Einw. Qk.S.C

Einw. *Qk.W.000*

Einw. Qk.W.090

Einw. Qk.W.180

Einw. *Qk.W.270*

(a)

aus Pos. '1', Lager 'A', Faktor links = 0.00, Faktor
rechts = 1.00 (Seite 11)

(b) aus Pos. '1', Lager 'A', Faktor links = 1.00, Faktor rechts = 0.00 (Seite 11)

Punktl asten

in z-Richtung

Einw. Gk
Einw. Qk.S.A
Einw. Qk.S.B
Einw. Qk.S.C

Einw. *Qk.W.000*Einw. *Qk.W.090*

Einw. *Qk.W.180*

Einw. *Qk.W.270*

Einzellasten

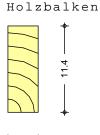
Feld Komm.

			[m]	[kN]
(a)	1	1-A	0.03	0.52
(a)	1	1-A	0.03	1.27
(a)	1	1-A	0.03	0.72
(a)	1	1-A	0.03	1.20
(a)	1	1-A	0.03	0.14
(a)	1	1-A	0.03	-0.81
(a)	1	1-A	0.03	-0.34
(a)	1	1-A	0.03	-0.51

(a) aus Pos. '1', Lager 'A', Lasteinzug = 1.00 m (Seite 11)

Kombi nati onen

Kombinationsbildung nach DIN EN 1990 Darstellung der maßgebenden Kombinationen


	Ek KLED	(* *EW)		
b\‡^ä↔&Ð{~ãfiâæã&È	2 ku	1.35*Gk	+1.50*Qk.S.A	
	3 ku/sk	1.00*Gk	+1.50*Qk.W.090	
selten	66	1.00*Gk	+1.00*Qk.S.A	+0.60*Qk.W.000
	68	1.00*Gk	+1.00*Qk.S.A	+0.60*Qk.W.000
@ áb↔Ëb\‡^ä↔&	69	1.00*Gk		
Lagesicherheit	71 ku/sk	1.10*Gk	+1.50*Qk.S.A	+0.90*Qk.W.000
	72 ku/sk	0.90*Gk	+1.50*Qk.W.090	
st./vor. Auflagerkr.	78 ku/sk	1.35*Gk	+1.50*Qk.S.A	+0.90*Qk.W.000
	79 ku/sk	1.00*Gk	+1.50*Qk.W.090	
	ku: kurz			
	ku/sk: kurz	/sehr kurz		

Mat./Querschnitt

nach DIN EN 1995-1-1

Materialien	Holz		fm,k	ft0k	fc0k	fc90k	fvk	${\tt E0mean}$
		$[N/mm^2]$						
	NH C24		24.0	14.5	21.0	2.5	4.0	11000
Querschnittswerte		b		h		А		Iy
		[cm]		[cm]		$[cm^2]$		$[cm^4]$
		4.0		11.4		45.6		493.8

Schnitt M 1:5

♦—4 —**♦**

Nachweise (GZT)

Sá´å}æ↔bæÁ↔↑ÁÖãæ^``|b\á^äÁäæãÁÚãá&à‡å↔&←æ↔\Á^á´åÁŒØSÁ EN 1995-1-1

<u>Bi egung</u>	Sá´å}æ⇔bÁ	.äæãÁÑ↔æ&	æ\ãá&à‡å	ı↔&←æ↔\			
Abs. 6.1	x	Ek	k_{mod}	M_{yd}	m,d	$f_{m,d}$	
	[m]		[-]	[kNm]	$[N/mm^2]$	$[N/mm^2]$	[-]
Kragarm links	(L = 1.17)	m , k_{crit}	= 0.90)				
	1.17	2	0.90	-0.60	6.91	16.62	0.46*
Feld 1	(L = 0.40	m , k_{crit}	= 1.00)				
	0.00	2	0.90	-0.60	6.91	16.62	0.42*
Feld 2	(L = 0.60	m, k _{crit}	= 1.00)				
	0.11	2	0.90	0.08	0.96	16.62	0.06*
Feld 3	(L = 0.23	m, k _{crit}	= 1.00)				
	0.00	2	0.90	-0.06	0.73	16.62	0.04*

<u>Querkraft</u>	Sá´å}æ⇔b <i>Í</i>		' æã←ãáà	∖∖ãá&à	¦å↔&←	æ↔\		
Abs. 6.1.7	x	Ek	k_{mo}		$V_{z,d}$	d	$f_{v,d}$	
	[m]				[kN]	$[N/mm^2]$		[-]
Kragarm links	0.98	2	0.9		1.07	0.71	2.77	0.25*
Feld 1	0.19	2	0.9		1.49	0.98	2.77	0.35*
	0.21	2	0.9		1.44	0.95	2.77	0.34
Feld 2	0.19	2	0.9		0.11	0.07	2.77	0.03
	0.41	2	0.9	0 –	0.38	0.25	2.77	0.09*
GhUV]`]h}h Abs. 6.3	Sá´å}æ⇔b <i>Í</i>	ÁäæãÁU	\áâ ↔ →	‡\				
ADS. 0.3	ŒæãÁÓ↔^à-	→ bbÁä	ıæãÁU\áâ	↔	√Á⇔b\Á	↔↑ÁSá´å}	a⇔bÁäæã.	Á
	Ñ⇔æ&æ\ãá&	à‡å⇔&	.←æ↔\Áæ^	\åá→\æ	^ÈÁÔ~	→&æ^äæÁ Î		
	Óãbá\~b\á							
Óãbá\~b\áâ→‡^&æ^					1			1 -
Caba \ D\aa > + &&				[m				$l_{ t ef,m} \ [m]$
	Kragarm l	inks		1.1				2.34
	Feld 1			0.4				0.40
	Feld 2			0.6				0.60
	Feld 3			0.2				0.23
Auflagarproccupa	27 1		6.1					
Aufl agerpressung	Nachweis						£ 4	
Abs. 6.1.5		k_{mod}	F _d	A _{ef}			f* _{c90d}	г 1
7		[-]	[kN]	[cm ²]	-		[N/mm ²]	[-]
Auflager A		.90	6.09	84.0		0.73	1.73	0.42
Auflager B		.00 .90	0.18 0.83	84.0 84.0	1.00	0.02	1.92	0.01
Auflager C							1.73	
Auflager D	_	.00 * f _{c90d}	0.06	72.0	1.00	0.01	1.92	0.00
Lagesi cherhei t DIN EN 1990, 6.4.2	Lagesiche NDP zu Al			is in	verti	kaler Ri	ichtung :	nach
DIN EN 1990, 0.4.2	Aufl.	(•	177		177		
	Aull.		Ek		,dst		,stb	гэ
	7)		[-] 72		kN] .80		kN] .13	2.47!
	A						-	
	В		71		.85		.00	-!
	C		72		.38		.16	2.30!
	D		71	-0	.25	Ü	.00	-!
	Zugverank	erung						
b\‡^ä↔&Ð{~ãfiâæã&È	Aufl.						F _{d,ar} [k]	
	A						-1.	
	В						-0.9	
	C						-0.1	
	5						0.1	

-0.27

78

D

	Proj.Bez	Errichtung eines Blockbohlenhauses		Seite	17
[RA]				Position	2
	Datum	04.04.2023	mb BauStatik S302.de 2023	3.009 Projekt	BBH2023

Nachweise (GZG)	Nachweise im Grenzzustand der Gebrauchsta nach DIN EN 1995-1-1	uglichkeit
Verformungen	Nachweise der Verformungen	
Abs. 7.2	x Ek Norm W _{vorh}	w_{zul}
	[m] [mm]	[mm] [-]
Kragarm links	$(L= 1.17 \text{ m, NKL } 2, k_{def} = 0.80)$	
	0.00 66 w_{inst} 3.1 $1/150=$	7.8 0.40
	0.00 68 w_{fin} 3.9 $1/100=$	
	0.00 69 $W_{\text{net,fin}}$ 1.7 $1/150=$	7.8 0.22
Feld 1	$(L= 0.40 \text{ m, NKL } 2, k_{def} = 0.80)$	
	0.15 66 W_{inst} -0.1 $1/300=$	-1.3 0.04
		-2.0 0.03
_ 110	0.15 69 W _{net,fin} 0.0 1/300=	-1.3 0.02
Feld 2	$(L= 0.60 \text{ m}, NKL 2, k_{def} = 0.80)$	0 0 0 00
	0.24 66 w_{inst} 0.0 $1/300=$	
	0.24 68 W_{fin} 0.0 $1/200=$	
m-14 2	$\frac{0.24 69 w_{\text{net,fin}} 0.0 1/300=}{\sqrt{1 - (0.03)^2 + (0.03)^2 + (0.03)^2}}$	2.0 0.01
Feld 3	$(L= 0.23 \text{ m}, NKL 2, k_{def} = 0.80)$ 0.10 66 w_{inst} 0.0 1/300=	-0.8 0.00
	0.10 69 $W_{\text{net,fin}}$ 0.0 $1/300=$	-0.8 0.00
<u>5i Z`U[Yf_f}ZhY</u>	Oåáãá←\æã↔b\↔b´åæÁN à→á&æã←ã‡à\æ	
Char. Auflagerkr.		
J	Aufl.	$F_{z,k}$
		[kN]
Einw. <i>Gk</i>	A	1.26
	В	-0.20
	C	0.18
	D	-0.05
Einw. <i>Qk.S.A</i>	A	2.93
	В	-0.40
	C	0.39
	D	-0.12
Einw. <i>Qk.S.B</i>	A	1.65
	В	-0.22
	C	0.22
T' 01 C C	D	-0.07
Einw. Qk.S.C	A	2.77
	В	-0.38
	C	0.37
Eins Ok W 000	<u>D</u> A	-0.11 0.31
Einw. <i>Qk.W.000</i>	B	-0.04
	C	0.04
	D	-0.01
Einw. <i>Qk.W.090</i>	A	-1.87
	В	0.25
	C	-0.25
	D	0.08
Einw. <i>Qk.W.180</i>	A	-0.78
	В	0.78
	_	0.11

P	roj.Bez	Errichtung e	eines Blockbohlenhau	ıses	Seite		18
[24]					Position		2
	atum	04.04.2023	mb BauStatik S302.	de 2023.009	Projekt		BBH2023
		Auf	1.				$F_{z,k}$
							[kN]
		$\overline{\mathtt{C}}$					-0.10
		D					0.03
Einw. Qk.W	.270	Ā					-1.17
		В					0.16
		C					-0.16
		D					0.05
Zusammenfa	ssung	Zus	sammenfassung de	er Nachweise			
Nachwei se	(GZT)	Nac	chweise im Gren	ızzustand der T	ragf‡higk	eit	
		Nac	chweis	Feld/Auflager	х		
					[m]		[-]
		Bie	egung	Feld 1	0.00	OK	0.46
		-	erkraft	Feld 1	0.19	OK	0.35
		Auf	lagerpressung	Auflager A		OK	0.42
			gesicherheit r.: ÔfiãÁä⇔æÁN à→á&æãÁN erforderlich.	náêáñáêáoáá ^äáŒáá↔b\á		Zugv. _{æãá^←æã}	- ^&Á
Nachwei se	(GZG)	. Nac	chweise im Gren	ızzust. der Geb	rauchstau	glic	hkeit
		Nac	chweis	Feld	х		
		_			[m]		[-]
		Anf	angsdurchbieg.	Kragarm links	0.00	OK	0.40
		End	ldurchbiegung	Kragarm links	0.00	OK	0.33
			11 11	1	0 00		

gesamte Enddurchb. Kragarm links

0.00

OK

0.22

Seite

19

Datum

04.04.2023

mb BauStatik S011 2023.009

Position Projekt

BBH2023

Pos. 3 K}bXY

Nachweismethode $\tilde{a}\tilde{a}\tilde{n}\tilde{a}\tilde{a}\tilde{a}^{-1}\tilde{a}\tilde{n}\rightarrow \tilde{a}\tilde{n}\rightarrow \tilde{a}\tilde{a}$

ÔfiãÁä⇔æÁÑæãæ´å^|^&Á{~^ÁÑ→~´←â~å→æ^}‡^äæ^Á}↔ãäÁ↔^ÁäæãÁÑ|^äæbãæ*|â→↔Á Deutschland allgemein die Berechnungsmethode nach:

Schriftenreihe Informationsdienst Holz Teil 3: Wohn- und Verwaltungsbauten Folge 5: Das Wohnblockhaus

anerkannt. Dabei richten sich insbesondere die Materialkennwerte nach der $\mathbb{E} \emptyset S \hat{A} = \mathbb{I} \hat{A} \oplus \hat{A$

Anwendbarkeit

Abmessungen, Material

Nadelholz C 24

Aussagen zur Standsicherheit

Die nachstehenden Aussagen des Verfassers beruhen im Wesentlichen auf den Óãàáåä $|^\&$ Aå-ÅäæbÁðæãb $\&\to$ æãbÁäæãÁÑ \to ~´ \leftarrow â~å \to æ^å‡|bæã£ÁäæãÁä \leftrightarrow æbæÁb´å~^ÁfiâæãÁ einen Zeitraum von mehr als 15 Jahren produziert.

Seite

Datum

04.04.2023

mb BauStatik S011 2023.009

Position Projekt

BBH2023

20

N|àâá|ÁäæbÁÒá|bæbÁ^ \leftrightarrow ´å\Á{æã‡^äæã\Á}æãäæ^ÊÁá|´åÁ}æ^^Áb \leftrightarrow ^åÁä \leftrightarrow æÁR~^\á&æÁ infolge Quellverhalten des Holzes schwierig gestalten sollte. Öæ&æâæ^æ^àá \to bÁ†|bbÁäábÁÒá|bÁ}‡åãæ^äÁæ \leftrightarrow ^æãÁ\ã~´ \leftarrow ^æãæ^ÁÕáåãæb~æ \leftrightarrow \Áæãã \leftrightarrow ´å\æ\Á werden.

ÔfiãÁÙ‡^äæÁ~å^æÁ,àà^|^&æ^Á←á^^Á{~^Áá|bãæ↔´åæ^äæãÁP^↔´←b↔´åæãåæ↔\Áá|b&æ&á^&æ^Á}æãäæ^ÈÁÓ↔^æÁ→æ↔´å\æÁÜæãà~ã↑|^&ÁäæãÁÙ‡^äæÁ↔^ÁäæãÁÖã=ßæ^~ãä^|^&Á{~^ÁåÐF€€Á wird zugelassen. Nachstehend erfolgt ein Nachweis der Pressung der untersten Blockbohle.

Nachweis der Pressung unterste Bohle

```
maximale Belastung im Bereich unter der Sturz- und Kragbohle; Auflagerlast A aus Pos.2 F = 1,26*1,35+(2,93+0,31)*1,50 = 6,56 \text{ kN}
```

```
\tilde{a}á&æ^äæÁQ‡^&æÁäæãÁÑ\rightarrow\sim'\leftarrowâ\simå\rightarrowæ 1 = 409 mm
```

vorh. Druckspannung q KÁIJÈIJ€ÐÇH€ÏEH€DÁKÁ€ÊH€ÁSÐ↑↑¥

```
N^b‡\~æ
```

Nutzungsklasse 2, Lasteinwirkungsdauer lang -> k(mod) = 0,90

```
zul. Druckspannung
```

```
zul.g = k(mod)*f(c,90,k)/([(M)*k(c,90)
= 0,90*2,50/(1,3*1,25)
K	AFEGIASD^{Y}
```

Nachweis

```
= 0,40/1,38 = 0,29 < 1,00
```

Seite

21

Datum

04.04.2023

mb BauStatik S011 2023.008

Position Projekt

BBH2023

Pos. 4

K]bXj YfUb_Yfi b['i bX'; f~ bXi b[

Windverankerung

 $N \mid a\tilde{A}x\leftrightarrow^*x^*\tilde{A}ax^*\hat{a}^*x^*\tilde{A}u \land a\hat{A}y \land a\hat{A}u \land a\hat{A}y \leftrightarrow a\hat{A}u \land a\hat{A}y \leftrightarrow a\hat{A}u \land a\hat{A}y \leftrightarrow a\hat{A}u \land a\hat{A}$

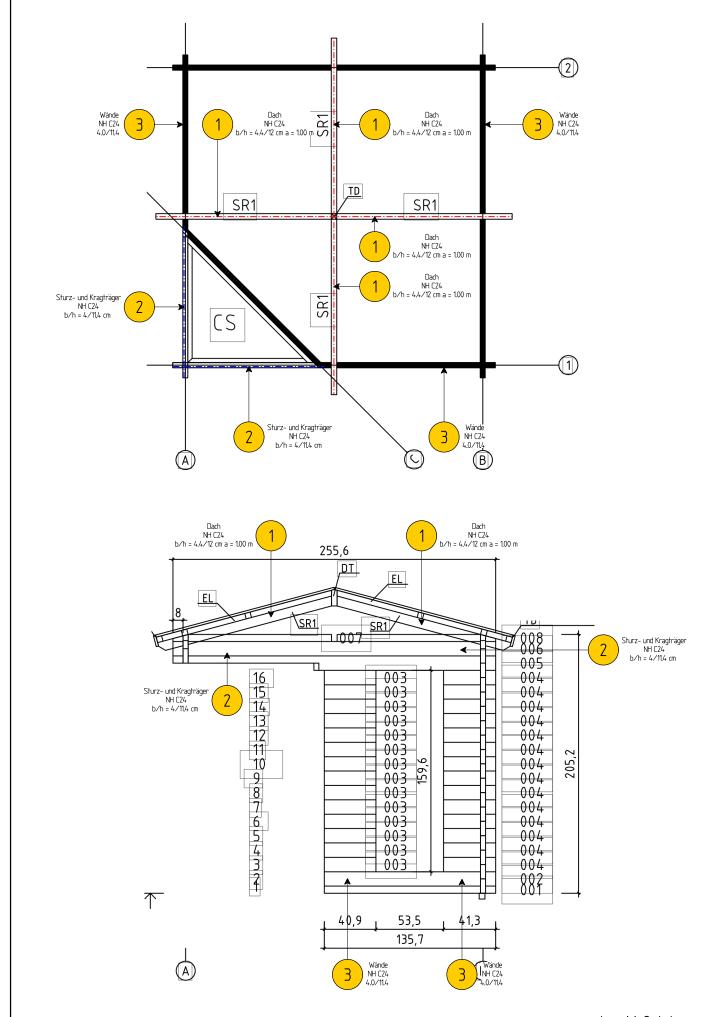
Alle Verbindungen sind zug- |^äÁäã|´ \leftarrow àæb\Áá|bˇ|àfiåãæ^ÊÁ|↑Ááâåæâæ^äæ^Á Pã‡à\æ^Áæ^\&æ&æ^ੱ|} \leftrightarrow ã \leftarrow æ°È

ItÃpfwpi

 $N \mid \grave{a} \hat{A} \approx \hat{a} \hat{a} = \hat{a} \cdot \hat{a} = \hat{a} \cdot$

 $\hat{O} \sim \&x^\ddot{a} \times \hat{O} = \hat{A} \times \hat{A$

Variante 1


|↑→á|àæ^äæÁb\ãæ↔àæ^áã\↔&æÁÖãfi^ä|^&ÌÁä↔æbæÁ←á^^Á}æ&æ^ÁäæãÁ&æã↔^&æ^ÁQáb\ÁäæbÁBauwerkes mit einer Breite ab 10 cm hergestellt werden.

Variante 2

Betonplatte von d ‡ 7,5 cm

 $\hat{U} \approx \sqrt{\hat{a}} = \hat{A} + \hat{A} = \hat{A} + \hat{A}$

 $\label{eq:local_local_local_local_local} $$ U_{\hat{a}}^{\hat{b}} = \hat{a}_{\hat{a}}^{\hat{a}} \hat{a}_{$

alle Hölzer NH C24 oder hochwertiger Nutzungsklasse 2 ohne Maßstab Positionsplan